10

LSP: The Liskov Substitution
Principle

The primary mechanisms behind the OCP are abstraction and polymorphism. In statically typed languages like
C++ and Java, one of the key mechanisms that supports abstraction and polymorphism is inheritance. It is by using
inheritance that we can create derived classes that implement abstract methods in base classes.

What are the design rules that govern this particular use of inheritance? What are the characteristics of the
best inheritance hierarchies? What are the traps that will cause us to create hierarchies that do not conform to the
OCP? These are the questions that are addressed by the Liskov Substitution Principle (LSP).

LSP: The Liskov Substitution Principle
The LSP can be paraphrased as follows:

SUBTYPES MUST BE SUBSTITUTABLE FOR THEIR BASE TYPES.
Barbara Liskov first wrote this principle in 1988.! She said,
What is wanted here is something like the following substitution property: If for each object o, of type

S there is an object 0, of type T such that for all programs P defined in terms of T, the behavior of P
is unchanged when o, is substituted for o, then S is a subtype of T.

1. [Liskov88].



112 Chapter 10 » LSP: The Liskov Substitution Principle

The importance of this principle becomes obvious when you consider the consequences of violating it. Pre-
sume that we have a function f that takes, as its argument, a pointer or reference to some base class B. Presume also
that there is some derivative D of B which, when passed to fin the guise of B, causes f to misbehave. Then D vio-
lates the LSP. Clearly D is Fragile in the presence of f.

The authors of f will be tempted to put in some kind of test for D so that f can behave properly when a D is
passed to it. This test violates the OCP because now fis not closed to all the various derivatives of B. Such tests are
a code smell that are the result of inexperienced developers (or, what’s worse, developers in a hurry) reacting to
LSP violations.

A Simple Example of a Violation of the LSP

Violating the LSP often results in the use of Run-Time Type Information (RTTI) in a manner that grossly violates
the OCP. Frequently, an explicit if statement or i f/else chain is used to determine the type of an object so that
the behavior appropriate to that type can be selected. Consider Listing 10-1.

Listing 10-1
A violation of LSP causing a violation of OCP.
struct Point {double x,y;}:;

struct Shape ({
enum ShapeType {square, circle} itsType;
Shape (ShapeType t) : itsTypel(t) {}

};

struct Circle : public Shape
{
Circle() : Shape(circle) ({};
void Draw() const;
Point itsCenter;
double itsRadius;
Y

struct Square : public Shape
{
Square() : Shape(square) {};
void Draw() const;
Point itsTopLeft;
double itsSide;
Y

void DrawShape (const Shape& s)
{

if (s.itsType == Shape: :square)
static_cast<const Square&>(s) .Draw() ;
else if (s.itsType == Shape::circle)

static_cast<const Circle&> (s) .Draw() ;

Clearly, the DrawShape function in Listing 10-1 violates the OCP. It must know about every possible deriv-
ative of the Shape class, and it must be changed whenever new derivatives of Shape are created. Indeed, many
rightly view the structure of this function as anathema to good design. What would drive a programmer to write a
function like this?



Square and Rectangle, a More Subtle Violation 113

Consider Joe the Engineer. Joe has studied object-oriented technology and has come to the conclusion that
the overhead of polymorphism is too high to pay.2 Therefore, he defined class Shape without any virtual func-
tions. The classes (structs) Square and Circle derive from Shape and have Draw () functions, but they don’t
override a function in Shape. Since Circle and Square are not substitutable for Shape, DrawShape must
inspect its incoming Shape, determine its type, and then call the appropriate Draw function.

The fact that Square and Circle cannot be substituted for Shape is a violation of the LSP. This violation
forced the violation of the OCP by DrawShape. Thus, a violation of LSP is a latent violation of OCP.

Square and Rectangle, a More Subtle Violation

Of course, there are other, far more subtle, ways of violating the LSP. Consider an application which uses the
Rectangle class as described in Listing 10-2.

Listing 10-2
Rectangle class

class Rectangle
{
public:
void SetWidth (double w) {itsWidth=w;}
void SetHeight (double h) {itsHeight=w;}
double GetHeight () const {return itsHeight;}
double GetWidth() const {return itswidth;}
private:
Point itsTopLeft;
double itswWidth;
double itsHeight;
};

Imagine that this application works well and is installed in many sites. As is the case with all successful soft-
ware, its users demand changes from time to time. One day, the users demand the ability to manipulate squares in
addition to rectangles.

It is often said that inheritance is the IS-A relationship. In other words, if a new kind of object can be said to
fulfill the IS-A relationship with an old kind of object, then the class of the new object should be derived from the
class of the old object.

For all normal intents and purposes, a square is a rectangle. Thus, it is logical to view the Square class as
being derived from the Rectangle class. (See Figure 10-1.)

Rectangle

T

Square

Figure 10-1 Square inherits from Rectangle

This use of the IS-A relationship is sometimes thought to be one of the fundamental techniques of object-
oriented analysis:3 A square is a rectangle, and so the Square class should be derived from the Rectangle class.

2. On a reasonably fast machine, that overhead is on the order of 1ns per method invocation, so it’s hard to see Joe’s point.

3. A term that is frequently used but seldom defined.



114 Chapter 10 * LSP: The Liskov Substitution Principle

However, this kind of thinking can lead to some subtle, yet significant, problems. Generally, these problem are not
foreseen until we see them in code.

Our first clue that something has gone wrong might be the fact that a Square does not need both itsHeight
and itsWidth member variables. Yet it will inherit them from Rectangle. Clearly, this is wasteful. In many
cases, such waste is insignificant. But if we must create hundreds of thousands of Square objects (e.g., a CAD/
CAE program in which every pin of every component of a complex circuit is drawn as a square), this waste could
be significant.

Let’s assume, for the moment, that we are not very concerned with memory efficiency. There are other prob-
lems that ensue from deriving Square from Rectangle. Square will inherit the SetWidth and SetHeight
functions. These functions are inappropriate for a Square, since the width and height of a square are identical.
This is a strong indication that there is a problem. However, there is a way to sidestep the problem. We could over-
ride Setwidth and SetHeight as follows:

void Square: :SetWidth(double w)
{
Rectangle: :SetWidth(w) ;
Rectangle: :SetHeight (w) ;

void Square: :SetHeight (double h)

{
Rectangle: :SetHeight (h) ;
Rectangle: :SetWidth(h) ;

Now, when someone sets the width of a Square object, its height will change correspondingly. And when
someone sets the height, its width will change with it. Thus, the invariants* of the Square remain intact. The
Square object will remain a mathematically proper square.

Square s;
s.SetWidth(l); // Fortunately sets the height to 1 too.
s.SetHeight(2); // sets width and height to 2. Good thing.

But consider the following function:

void f (Rectangle& r)
{
r.SetWidth(32); // calls Rectangle::SetWidth

If we pass a reference to a Square object into this function, the Square object will be corrupted because the
height won’t be changed. This is a clear violation of LSP. The £ function does not work for derivatives of its argu-
ments. The reason for the failure is that SetWidth and SetHeight were not declared virtual in Rectangle;
therefore, they are not polymorphic.

We can fix this easily. However, when the creation of a derived class causes us to make changes to the base
class, it often implies that the design is faulty. Certainly it violates the OCP. We might counter this by saying that
forgetting to make Setwidth and SetHeight virtual was the real design flaw, and we are just fixing it now.
However, this is hard to justify since setting the height and width of a rectangle are exceedingly primitive opera-
tions. By what reasoning would we make them virtual if we did not anticipate the existence of Square.

4. Those properties that must always be true regardless of state.



Square and Rectangle, a More Subtle Violation 115

Still, let’s assume that we accept the argument and fix the classes. We wind up with the code in Listing 10-3.

Listing 10-3
Rectangle and Square that are Self-Consistent.

class Rectangle
{
public:
virtual void SetWidth (double w) {itsWidth=w;}
virtual void SetHeight (double h) {itsHeight=h;}

double GetHeight () const {return itsHeight;}
double GetWidth() const {return itsWidth;}
private:

Point itsTopLeft

double itsHeight;

double itsWidth;
}i

class Square : public Rectangle
{
public:
virtual void SetWidth(double w) ;
virtual void SetHeight (double h);
}i

void Square::SetWidth (double w)
{
Rectangle: :SetWidth(w) ;
Rectangle: :SetHeight (w) ;
}

void Square: :SetHeight (double h)
{
Rectangle: : SetHeight (h) ;
Rectangle: :SetWidth(h) ;
}

The Real Problem

Square and Rectangle now appear to work. No matter what you do to a Square object, it will remain consistent
with a mathematical square. And regardless of what you do to a Rectangle object, it will remain a mathematical
rectangle. Moreover, you can pass a Square into a function that accepts a pointer or reference to a Rectangle,
and the Square will still act like a square and will remain consistent.

Thus, we might conclude that the design is now self-consistent and correct. However, this conclusion would
be amiss. A design that is self-consistent is not necessarily consistent with all its users! Consider the following
function g:

void g(Rectangle& r)

{
r.SetWidth(5) ;
r.SetHeight (4) ;
assert(r.Area() == 20);



116 Chapter 10 * LSP: The Liskov Substitution Principk

This function invokes the Setwidth and SetHeight members of what it believes to be a Rectangle. The
function works just fine for a Rectangle, but it declares an assertion error if passed a Square. So here is the red
problem: The author of g assumed that changing the width of a Rectangle leaves its height unchanged.

Clearly, it is reasonable to assume that changing the width of a rectangle does not affect its height! However,
not all objects that can be passed as Rectangles satisfy that assumption. If you pass an instance of a Square toz
function like g, whose author made that assumption, then that function will malfunction. Function g is Fragile with
respect to the Square/Rectangle hierarchy.

Function g shows that there exist functions that take pointers or references to Rectangle objects, but that can-
not operate properly on Square objects. Since, for these functions, Square is not substitutable for Rectangle, the
relationship between Square and Rectangle violates the LSP.

One might contend that the problem lay in function g—that the author had no right to make the assumption
that width and height were independent. The author of g would disagree. The function g takes a Rectagle as s
argument. There are invariants, statements of truth, that obviously apply to a class named Rectangle, and one of
those invariants is that height and width are independent. The author of g had every right to assert this invariant. It
is the author of Square that has violated the invariant.

Interestingly enough, the author of Square did not violate an invariant of Square. By deriving Square
from Rectangle, the author of Square violated an invariant of Rectangle!

Validity Is Not Intrinsic

The LSP leads us to a very important conclusion: A model, viewed in isolation, can-
not be meaningfully validated. The validity of a model can only be expressed in
terms of its clients. For example, when we examined the final version of the Square
and Rectangle classes in isolation, we found that they were self-consistent and
valid. Yet when we looked at them from the viewpoint of a programmer who made
reasonable assumptions about the base class, the model broke down.

When considering whether a particular design is appropriate or not, one can-
not simply view the solution in isolation. One must view it in terms of the reason-
able assumptions made by the users of that design.5

Who knows what reasonable assumptions the users of a design are going to
make? Most such assumptions are not easy to anticipate. Indeed, if we tried to
anticipate them all, we’d likely wind up imbuing our system with the smell of Needless Complexity. Therefore.
like all other principles, it is often best to defer all but the most obvious LSP violations until the related Fragility
has been smelled.

ISA Is about Behavior

So what happened? Why did the apparently reasonable model of the Square and Rectangle go bad? After all.
isn’t a Square a Rectangle? Doesn’t the IS-A relationship hold?

Not as far as the author of g is concerned! A square might be a rectangle, but from g’s point of view, 2
Square object is definitely not a Rectangle object. Why? Because the behavior of a Square object is not con-
sistent with g’s expectation of the behavior of a Rectangle object. Behaviorally, a Square is not a Rectangle,
and it is behavior that software is really all about. The LSP makes it clear that in OOD, the IS-A relationship per-
tains to behavior that can be reasonably assumed and that clients depend on.

5. Often you will find that those reasonable assumptions are asserted in the unit tests written for the base class. Yet another good reason to
practice test-driven development.



A Real Example 117

Design by Contract

Many developers may feel uncomfortable with the notion of behavior that is “reasonably assumed.” How do you
know what your clients will really expect? There is a technique for making those reasonable assumptions explicit,
thereby enforcing the LSP. The technique is called design by contract (DBC) and is expounded by Bertrand
Meyer.6

Using DBC, the author of a class explicitly states the contract for that class. The contract informs the author
of any client code about the behaviors that can be relied on. The contract is specified by declaring preconditions
and postconditions for each method. The preconditions must be true in order for the method to execute. On com-
pletion, the method guarantees that the postconditions are true.

We can view the postcondition of Rectangle: : SetWidth (double w) as follows:

assert((itsWidth == w) && (itsHeight == old.itsHeight));

In this example, 014 is the value of the Rectangle before Setwidth is called. Now the rule for precondi-
tions and postconditions of derivatives, as stated by Meyer, is:

A routine redeclaration [in a derivative] may only replace the original precondition by one equal or
weaker, and the original postcondition by one equal or strongen7

In other words, when using an object through its base-class interface, the user knows only the preconditions
and postconditions of the base class. Thus, derived objects must not expect such users to obey preconditions that
are stronger than those required by the base class. That is, they must accept anything that the base class could
accept. Also, derived classes must conform to all the postconditions of the base. That is, their behaviors and out-
puts must not violate any of the constraints established for the base class. Users of the base class must not be con-
fused by the output of the derived class.

Clearly, the postcondition of Square::SetWidth(double w) is weaker® than the postcondition of
Rectangle: : SetWidth (double w), since it does not enforce the constraint, (itsHeight == old.its
Height). Thus, the SetWidth method of Square violates the contract of the base class.

Certain languages, like Eiffel, have direct support for preconditions and postconditions. You can declare
them and have the runtime system verify them for you. Neither C++ nor Java has such a feature. In these lan-
guages, we must manually consider the preconditions and postcondition of each method and make sure that
Meyer’s rule is not violated. Moreover, it can be very helpful to document these preconditions and postconditions
in the comments for each method.

Specifying Contracts in Unit Tests
Contracts can also be specified by writing unit tests. By thoroughly testing the behavior of a class, the unit tests

make the behavior of the class clear. Authors of client code will want to review the unit tests so that they know
what to reasonably assume about the classes they are using.

A Real Example

Enough of squares and rectangles! Does the LSP have a bearing on real software? Let’s look at a case study that
comes from a project that I worked on a few years ago.

6. [Meyer97], Chapter 11, p. 331.
1. [Meyer97], p. 573, Assertion Redeclaration rule (1).

8. The term “weaker” can be confusing. X is weaker than Y if X does not enforce all the constraints of Y. It does not matter how many
new constraints X enforces.



118 Chapter 10 ¢ LSP: The Liskov Substitution Principle

Motivation

In the early 1990s, I purchased a third-party class library that had some container classes. The containers were
roughly related to the Bags and Sets of Smalltalk. There were two varieties of Set and two similar varieties of
Bag. The first variety was called “bounded” and was based on an array. The second was called “unbounded” and
was based on a linked list.

The constructor for BoundedSet specified the maximum number of elements the set could hold. The space
for these elements was preallocated as an array within the Boundedset. Thus, if the creation of the Boundedset
succeeded, we could be sure that it had enough memory. Since it was based on an array, it was very fast. There
were no memory allocations performed during normal operation. And since the memory was preallocated, we
could be sure that operating the BoundedSet would not exhaust the heap. On the other hand, it was wasteful of
memory since it would seldom completely utilize all the space that it had preallocated.

UnboundedSet, on the other hand, had no declared limit on the number of elements it could hold. So long
as there was heap memory avaliable, the UnboundedsSet would continue to accept elements. Therefore, it was
very flexible. It was also economical in that it only used the memory necessary to hold the elements that it cur-
rently contained. It was also slow because it had to allocate and deallocate memory as part of its normal operation.
Finally, there was a danger that its normal operation could exhaust the heap.

I was unhappy with the interfaces of these third-party classes. I did not want my application code to be
dependent on them because I felt that I would want to replace them with better classes later. Thus, I wrapped the
third-party containers in my own abstract interface as shown in Figure 10-2.

Third Party

Unbounded Set Unbounded Set

Bounded Set

Third Party
Bounded Set

Figure 10-2 Container class adapter layer

I created an abstract class called Set that presented pure virtual Add, Delete, and IsMember functions, as
shown in Listing 10-4. This structure unified the unbounded and bounded varieties of the two third-party sets and
allowed them to be accessed through a common interface. Thus, some client could accept an argument of type
Set<T>& and would not care whether the actual set it worked on was of the bounded or unbounded variety.
(See the PrintsSet function in Listing 10-5.)

Listing 10-4
Abstract Set Class

template <class T>
class Set
{
public:
virtual void Add(const T&) = 0;
virtual void Delete(const T&) = 0;
virtual bool IsMember (const T&) const = 0;
};



A Real Example 119

Listing 10-5
PrintSet
template <class T>

void PrintSet (const Set<T>& s)

{
for (Iterator<T>i(s); 1i; i++
cout << (*i) << endl;

It is a big advantage not to have to know or care what kind of Set you are using. It means that the program-
mer can decide which kind of Set is needed in each particular instance, and none of the client functions will be
affected by that decision. The programmer may choose an UnboundedSet when memory is tight and speed is not
critical, or the programmer may choose an BoundedSet when memory is plentiful and speed is critical. The client
functions will manipulate these objects through the interface of the base class Set and will therefore not know or
care which kind of Set they are using.

Problem

Iwanted to add a PersistentSet to this hierarchy. A persistent set is a set that can be written out to a stream and
then read back in later, possibly by a different application. Unfortunately, the only third-party container that I had
access to, that also offered persistence, was not a template class. Instead, it accepted objects that were derived
from the abstract base class PersistentObject. I created the hierarchy shown in Figure 10-3.

Persistent
Object

e <<delegates>> | Third Party
PersistentSet Persistent Set

Figure 10-3 Persistent Set Hierarchy

Note that PersistentSet contains an instance of the third-party persistent set, to which it delegates all its
methods. Thus, if you call Add on the PersistentSet, it simply delegates that to the appropriate method of the
contained third-party persistent set.

On the surface of it, this might look all right. However, there is an ugly implication. Elements that are added
to the third-party persistent set must be derived from PersistentObject. Since PersistentSet simply dele-
gates to the third-party persistent set, any element added to PersistentSet must therefore derive from
PersistentObject. Yet the interface of Set has no such constraint.

When a client is adding members to the base class Set, that client cannot be sure whether or not the set
might actually be a PersistentSet. Thus, the client has no way of knowing whether or not the elements it adds
ought to be derived from PersistentObject.

Consider the code for PersistentSet: :Add () in Listing 10-6.



120 Chapter 10 » LSP: The Liskov Substitution Principle

Listing 10-6
template <typename T>

void PersistentSet::Add(const T& t)
{
PersistentObject& p =
dynamic_cast<PersistentObject&>(t) ;
itsThirdPartyPersistentSet.Add(p);

This code makes it clear that if any client tries to add an object that is not derived from the class
PersistentObject to my PersistentSet, a runtime error will ensue. The dynamic_cast will throw
bad_cast. None of the existing clients of the abstract base class Set expects exceptions to be thrown on Add.
Since these functions will be confused by a derivative of Set, this change to the hierarchy violates the LSP.

Is this a problem? Certainly. Functions that never before failed when passed a derivative of Set may now
cause runtime errors when passed a PersistentSet. Debugging this kind of problem is relatively difficult since
the runtime error occurs very far away from the actual logic flaw. The logic flaw is either the decision to pass a
PersistentSet into a function or it is the decision to add an object to the PersistentSet that is not derived
from PersistentObject. In either case, the actual decision might be millions of instructions away from the
actual invocation of the Add method. Finding it can be a bear. Fixing it can be worse.

A Solution That Does Not Conform to the LSP

How do we solve this problem? Several years ago, I solved it by convention. Which is to say that I did not solve it
in source code. Rather, I established a convention whereby PersistentSet and PersistentObject were not
known to the application as a whole. They were only known to one particular module. This module was responsi-
ble for reading and writing all the containers to and from the persistent store. When a container needed to be
written, its contents were copied into appropriate derivatives of PersistentObject and then added to
PersistentSets, which were then saved on a stream. When a container needed to be read from a stream, the
process was inverted. A PersistentSet was read from the stream, and then the PersistentObjects wer
removed from the PersistentSet and copied into regular (nonpersistent) objects, which were then added to a
regular Set.

This solution may seem overly restrictive, but it was the only way I could think of to prevent PersistentSet
objects from appearing at the interface of functions that would want to add nonpersistent objects to them. Moreover.
it broke the dependency of the rest of the application on the whole notion of persistence.

Did this solution work? Not really. The convention was violated in several parts of the application by devel-
opers who did not understand the necessity for it. That is the problem with conventions—they have to be continu-
ally resold to each developer. If the developer has not learned the convention, or does not agree with it, then the
convention will be violated. And one violation can compromise the whole structure.

An LSP-Compliant Solution

How would I solve this now? I would acknowledge that a PersistentSet does not have an IS-A relationship
with Set, that it is not a proper derivative of Set. Thus, I would separate the hierarchies, but not completely. There
are features that Set and PersistentSet have in common. In fact, it is only the Add method that causes the dif-
ficulty with LSP. Consequently, I would create a hierarchy in which both Set and PersistentSet were siblings
beneath an abstract interface that allowed for membership testing, iteration, etc. (See Figure 10-4.) This would
allow PersistentSet objects to be iterated and tested for membership, etc. But it would not afford the ability to
add objects that were not derived from PersistentObject t0 a PersistentSet.



Factoring instead of Deriving

Container
Remove(T) Persistent
Isin(T) Object
i A
Set PersistentSet - | pl:‘s'ir:t ::tnget
Add(T) Add(T)

Figure 10-4 A solution that is LSP compliant

Factoring instead of Deriving

121

Another interesting and puzzling case of inheritance is the case of the Line and the LineSegment .2 Consider
Listings 10-7 and 10-8. These two classes appear, at first, to be natural candidates for public inheritance.
LineSegment needs every member variable and every member function declared in Line. Moreover,
LineSegment adds a new member function of its own, GetLength, and overrides the meaning of the Ison func-

tion. Yet these two classes violate the LSP in a subtle way.

Listing 10-7
geometry/line.h

#ifndef GEOMETRY_LINE_H
#define GEOMETRY_LINE_H
#include "geometry/point.h"

class Line
{
public:
Line(const Point& pl, const Point& p2);

double GetSlope() const;
double GetIntercept() const; // Y Intercept
Point GetP1 () const {return itsPl;};

Point GetP2()
virtual bool IsOn(const Point&) const;

private:
Point itsPl;
Point itsP2;
};
#endif

Listing 10-8
geometry/lineseg.h

tifndef GEOMETRY_LINESEGMENT_H
#define GEOMETRY_LINESEGMENT_H
class LineSegment : public Line

const {return itsP2;};

9. Despite the similarity that this example has to the Square/Rectangle example, it comes from a real application and was subject to the

real problems discussed.



122 Chapter 10 ¢ LSP: The Liskov Substitution Principle

public:
LineSegment (const Point& pl, const Point& p2);
double GetLength() const;

virtual bool IsOn(const Point&) const;
};
#endif

A user of Line has a right to expect that all points that are colinear with it are on it. For example, the point
returned by the Intercept function is the point at which the line intersects the y-axis. Since this point is collinea
with the line, users of Line have a right to expect that IsOn(Intercept()) == true. In many instances of
LineSegment, however, this statement will fail.

Why is this an important issue? Why not simply derive LineSegment from Line and live with the subtle
problems? This is a judgment call. There are rare occasions when it is more expedient to accept a subtle flaw in
polymorphic behavior than to attempt to manipulate the design into complete LSP compliance. Accepting compro-
mise instead of pursuing perfection is an engineering trade-off. A good engineer learns when compromise is more
profitable than perfection. However, conformance to the LSP should not be surrendered lightly. The guarantee that
a subclass will always work where its base classes are used is a powerful way to manage complexity. Once it is for
saken, we must consider each subclass individually.

In the case of the Line and LineSegment, there is a simple solution that illustrates an important tool of
OOD. If we have access to both the Line and LineSegment classes, then we can factor the common elements of
both into an abstract base class. Listings 10-9 through 10-11 show the factoring of Line and LineSegment into the
base class LinearObject.

Listing 10-9
geometry/linearobj.h

#ifndef GEOMETRY_LINEAR_OBJECT_H
#define GEOMETRY_LINEAR_OBJECT_H

#include "geometry/point.h"

class LinearObject
{
public:
LinearObject (const Point& pl, const Pointé& p2);

double GetSlope () const;
double GetIntercept () const;

Point GetPl() const {return itsPl;};
Point GetP2() const {return itsP2;};
virtual int IsOn(const Point&) const = 0; // abstract.

private:
Point itsPl;
Point itsP2;
};:
#endif



Factoring instead of Deriving 123

Listing 10-10
geometry/line.h
$ifndef GEOMETRY_LINE_H

#define GEOMETRY_LINE_H
#include "geometry/linearobj.h"

class Line : public LinearObject
{
public:
Line(const Point& pl, const Point& p2);
virtual bool IsOn(const Point&) const;
};
#endif

Listing 10-11
geometry/lineseg.h
$ifndef GEOMETRY_LINESEGMENT_H

$define GEOMETRY_LINESEGMENT_H
#include "geometry/linearobj.h"

class LineSegment : public LinearObject
{
public:
LineSegment (const Point& pl, const Point& p2);

double GetLength() const;
virtual bool IsOn(const Point&) const;
)i
#endif

LinearObject represents both Line and LineSegment. It provides most of the functionality and data
members for both subclasses, with the exception of the Ison method, which is pure virtual. Users of
LinearObject are not allowed to assume that they understand the extent of the object they are using. Thus, they
can accept either a Line or a LineSegment with no problem. Moreover, users of Line will never have to deal
with a LineSegment.

Factoring is a design tool that is best applied before there is much code written. Certainly, if there were doz-
ens of clients of the Line class shown in Listing 10-7, we would not have had an easy time of factoring out the
LinearObject class. When factoring is possible, however, it is a powerful tool. If qualities can be factored out of
two subclasses, there is the distinct possibility that other classes will show up later that need those qualities, too.
Of factoring, Rebecca Wirfs—Brock, Brian Wilkerson, and Lauren Wiener say:

We can state that if a set of classes all support a common responsibility, they should inherit that
responsibility from a common superclass.

If a common superclass does not already exist, create one, and move the common responsibilities to it.
After all, such a class is demonstrably useful—you have already shown that the responsibilities will be
inherited by some classes. Isn’t it conceivable that a later extension of your system might add a new
subclass that will support those same responsibilities in a new way? This new superclass will probably
be an abstract class.?

10. [WirfsBrock90], p. 113.



124 Chapter 10 * LSP: The Liskov Substitution Principle

Listing 10-12 shows how the attributes of LinearObject can be used by an unanticipated class, Ray. A Ray
is substitutable for a LinearObject, and no user of LinearObject would have any trouble dealing with it.

Listing 10-12
geometry/ray.h

#ifndef GEOMETRY_RAY_H
#define GEOMETRY_RAY_ H

class Ray : public LinearObject
{
public:
Ray (const Point& pl, const Point& p2);
virtual bool IsOn(const Point&) const;
Y
#endif

Heuristics and Conventions

There are some simple heuristics that can give you some clues about LSP violations. They all have to do with
derivative classes that somehow remove functionality from their base classes. A derivative that does less than its
base is usually not substitutable for that base, and therefore violates the LSP.

Degenerate Functions in Derivatives

Consider Listing 10-13. The £ function in Base is implemented. However, in Derived it is degenerate. Presum-
ably, the author of Derived found that function £ had no useful purpose in a Derived. Unfortunately, the users of
Base don’t know that they shouldn’t call £, so there is a substitution violation.

Listing 10-13
A degenerate function in a derivative
public class Base

{
public void f() {/*some code*/}

public class Derived extends Base
{
public void £() {}

The presence of degenerate functions in derivatives is not always indicative of an LSP violation, but it’s
worth looking at them when they occur.

Throwing Exceptions from Derivatives

Another form of violation is the addition of exceptions to methods of derived classes whose bases don’t throw
them. If the users of the base classes don’t expect exceptions, then adding them to the methods of derivatives is not
substitutable. Either the expectations of the users must be altered or the derived classes should not throw the
exceptions.



Conclusion 125

Conclusion

The OCP is at the heart of many of the claims made for OOD. When this principle is in effect, applications are
more maintainable, reusable, and robust. The LSP is one of the prime enablers of the OCP. It is the substitutability
of subtypes that allows a module, expressed in terms of a base type, to be extensible without modification. That
substitutability must be something that developers can depend on implicitly. Thus, the contract of the base type has
to be well and prominently understood, if not explicitly enforced, by the code.

The term “IS-A” is too broad to act as a definition of a subtype. The true definition of a subtype is “substitut-
able,” where substitutability is defined by either an explicit or implicit contract.

Bibliography

1. Meyer, Bertrand. Object-Oriented Software Construction, 2d ed. Upper Saddle River, NJ: Prentice Hall, 1997.
2. Wirfs—Brock, Rebecca, et al. Designing Object-Oriented Software. Englewood Cliffs, NJ: Prentice Hall, 1990.
3. Liskov, Barbara. Data Abstraction and Hierarchy. SIGPLAN Notices, 23,5 (May 1988).






11

DIP: The Dependency-Inversion
Principle

© Jennifer M. Kohoke

Nevermore

Let the great interests of the State depend
Upon the thousand chances that may sway
A piece of human frailty

—Sir Thomas Noon Talfourd (1795-1854)

DIP: The Dependency-Inversion Principle

a. High-level modules should not depend on low-level modules. Both should depend on abstractions.
b. Abstractions should not depend on details. Details should depend on abstractions.

Over the years, many have questioned why I use the word “inversion™ in the name of this principle. It is because
more traditional software development methods, such as Structured Analysis and Design, tend to create soft-
ware structures in which high-level modules depend on low-level modules, and in which policy depends on
detail. Indeed one of the goals of these methods is to define the subprogram hierarchy that describes how the
high-level modules make calls to the low-level modules. The initial design of the Copy program in Figure 7-1
on page 90 is a good example of such a hierarchy. The dependency structure of a well-designed, object-oriented
program is “inverted” with respect to the dependency structure that normally results from traditional procedural
methods.

Consider the implications of high-level modules that depend on low-level modules. It is the high-level
modules that contain the important policy decisions and business models of an application. These modules

127



128 Chapter 11 ¢ DIP: The Dependency-Inversion Principlk

contain the identity of the application. Yet, when these modules depend on the lower level modules, changes to
the lower level modules can have direct effects on the higher level modules and can force them to change
in turn.

This predicament is absurd! It is the high-level, policy-setting modules that ought to be influencing the low-
level, detailed modules. The modules that contain the high-level business rules should take precedence over, and
be independent of, the modules that contain the implementation details. High-level modules simply should not
depend on low-level modules in any way.

Moreover, it is high-level, policy-setting modules that we want to be able to reuse. We are already quite good
at reusing low-level modules in the form of subroutine libraries. When high-level modules depend on low-level
modules, it becomes very difficult to reuse those high-level modules in different contexts. However, when the
high-level modules are independent of the low-level modules, then the high-level modules can be reused quite sim-
ply. This principle is at the very heart of framework design.

Layering

According to Booch, “...all well-structured object-oriented architectures have clearly defined layers, with each
layer providing some coherent set of services though a well-defined and controlled interface.”! A naive interpre-
tation of this statement might lead a designer to produce a structure similar to Figure 11-1. In this diagram, the
high-level Policy layer uses a lower-level Mechanism layer, which in turn uses a detailed-level Utility
layer. While this may look appropriate, it has the insidious characteristic that the Policy layer is sensitive to
changes all the way down in the Utility layer. Dependency is transitive. The Policy layer depends on some-
thing that depends on the Utility layer; thus, the Policy layer transitively depends on the Utility layer
This is very unfortunate.

Policy Layer [~y
YV
Mechanism |
Layer \/
Utility Layer

Figure 11-1 Naive layering scheme

Figure 11-2 shows a more appropriate model. Each of the upper-level layers declares an abstract interface
for the services that it needs. The lower-level layers are then realized from these abstract interfaces. Each higher-
level class uses the next-lowest layer through the abstract interface. Thus, the upper layers do not depend on the
lower layers. Instead, the lower layers depend on abstract service interfaces declared in the upper layers. Not only
is the transitive dependency of PolicyLayer on UtilityLayer broken, but even the direct dependency of the
PolicyLayer on MechanismLayer is broken.

An Inversion of Ownership

Notice that the inversion here is not just one of dependencies, it is also one of interface ownership. We often think
of utility libraries as owning their own interfaces. But when the DIP is applied, we find that the clients tend to own
the abstract interfaces and that their servers derive from them.

1. [Booch96], p. 54.



Layering 129

Policy |
«interface»
) Policy Service
Policy Layer |nt¥arface
A
]
Mechanism ] |
| «interface»
. Mechanism
Metga::sm Service
y! Interface
A
|
Utility |
|
Utility
Layer

Figure 11-2 Inverted Layers

This is sometimes known as the Hollywood principle: “Don’t call us, we’ll call you.”2 The lower-level mod-
ules provide the implementation for interfaces that are declared within, and called by, the upper-level modules.

Using this inversion of ownership, PolicyLayer is unaffected by any changes to MechanismLayer or
UtilityLayer. Moreover, PolicyLayer can be reused in any context that defines lower-level modules that con-
form to the PolicyServiceInterface. Thus, by inverting the dependencies, we have created a structure, which
is simultaneously more flexible, durable, and mobile.

Depend On Abstractions

A somewhat more naive, yet still very powerful, interpretation of the DIP is the simple heuristic: “Depend on
abstractions.” Simply stated, this heuristic recommends that you should not depend on a concrete class—that all
relationships in a program should terminate on an abstract class or an interface.

According to this heuristic,

* No variable should hold a pointer or reference to a concrete class.
* No class should derive from a concrete class.
* No method should override an implemented method of any of its base classes.

Certainly this heuristic is usually violated at least once in every program. Somebody has to create the
instances of the concrete classes, and whatever module does that will depend on them.3 Moreover, there seems no
reason to follow this heuristic for classes that are concrete but nonvolatile. If a concrete class is not going to

change very much, and no other similar derivatives are going to be created, then it does very little harm to depend
on it.

2, [Sweet85].

3 Actually, there are ways around this if you can use strings to create classes. Java allows this. So do several other languages. In such lan-
guages, the names of the concrete classes can be passed into the program as configuration data.



130 Chapter 11 » DIP: The Dependency-Inversion Principle

For example, in most systems the class that describes a string is concrete. In Java, for example, it is the con-
crete class String. This class is not volatile. That is, it does not change very often. Therefore it does no harm to
depend directly on it.

However, most concrete classes that we write as part of an application program are volatile. It is those con-
crete classes that we do not want to depend directly on. Their volatility can be isolated by keeping them behind an
abstract interface.

This is not a complete solution. There are times when the interface of a volatile class must change, and this
change must be propagated to the abstract interface that represents the class. Such changes break through the iso-
lation of the abstract interface.

This is the reason that the heuristic is a bit naive. If, on the other hand, we take the longer view that the client
classes declare the service interfaces that they need, then the only time the interface will change is when the client
needs the change. Changes to the classes that implement the abstract interface will not affect the client.

A Simple Example

Dependency inversion can be applied wherever one class sends a message to another. For example, consider the
case of the But ton object and the Lamp object.

The Button object senses the external environment. On receiving the Pol1l message, it determines whether
or not a user has “pressed” it. It doesn’t matter what the sensing mechanism is. It could be a button icon on a GUL
a physical button being pressed by a human finger, or even a motion detector in a home security system. The
Button object detects that a user has either activated or deactivated it.

The Lamp object affects the external environment. On receiving a TurnOn message, it illuminates a light of
some kind. On receiving a TurnOf f message, it extinguishes that light. The physical mechanism is unimportant. It
could be an LED on a computer console, a mercury vapor lamp in a parking lot, or even the laser in a laser printer.

How can we design a system such that the Button object controls the Lamp object? Figure 11-3 shows a
naive design. The Button object receives Pol1l messages, determines if the button has been pressed, and then
simply sends the TurnOn or Turnoff message to the Lamp.

Button Lamp
+ TurnOn()
+ Pollg + TurnOff()

Figure 11-3 Naive Model of a Button and a Lamp

Why is this naive? Consider the Java code that is implied by this model (Listing 11-1). Note that the Button
class depends directly on the Lamp class. This dependency implies that Button will be affected by changes to
Lamp. Moreover, it will not be possible to reuse But ton to control a Motor object. In this design, But ton objects
control Lamp objects, and only Lamp objects.

Listing 11-1
Button.java

public class Button
{
private Lamp itsLamp;
public void poll{()
{
if (/*some condition*/)
itsLamp. turnOn() ;



A Simple Example 131

This solution violates the DIP. The high-level policy of the application has not been separated from the low-
level implementation. The abstractions have not been separated from the details. Without such a separation, the
high-level policy automatically depends on the low-level modules, and the abstractions automatically depend on
the details.

Finding the Underlying Abstraction

What is the high-level policy? It is the abstraction that underlies the application, the truths that do not vary when
the details are changed. It is the system inside the system—it is the metaphor. In the Button/Lamp example, the
underlying abstraction is to detect an on/off gesture from a user and relay that gesture to a target object. What
mechanism is used to detect the user gesture? Irrelevant! What is the target object? Irrelevant! These are details
that do not impact the abstraction.

The design in Figure 11-3 can be improved by inverting the dependency on the Lamp object. In Figure 11-4,
we see that the But ton now holds an association to something called a ButtonServer. ButtonServer provides
abstract methods that But ton can use to turn something on or off. Lamp implements the But tonServer interface.
Thus, Lamp is now doing the depending, rather than being depended on.

«interface»
ButtonServer

Button

+ poll() + turnOff()
+ turnOn()

T

Lamp

Figure 11-4 Dependency Inversion Applied to the Lamp

The design in Figure 11-4 allows a Button to control any device that is willing to implement the
ButtonServer interface. This gives us a great deal of flexibility. It also means that But ton objects will be able to
control objects that have not yet been invented.

However, this solution also puts a constraint on any object that needs to be controlled by a Button. Such an
object must implement the ButtonServer interface. This is unfortunate because these objects may also want to
be controlled by a Switch object or some object other than a Button.

By inverting the direction of the dependency and making the Lamp do the depending instead of being
depended on, we have made Lamp depend on a different detail—Button. Or have we?

Lamp certainly depends on ButtonServer, but ButtonServer does not depend on Button. Any kind of
object that knows how to manipulate the But tonServer interface will be able to control a Lamp. Thus, the depen-
dency is in name only. And we can fix that by changing the name of ButtonServer to something a bit more
generic like SwitchableDevice. We can also ensure that Button and SwitchableDevice are kept in separate
libraries, so that the use of SwitchableDevice does not imply the use of Button.

In this case, nobody owns the interface. We have the interesting situation where the interface can be used by
lots of different clients and implemented by lots of different servers. Thus, the interface needs to stand alone with-

out belonging to either group. In C++, we would put it in a separate namespace and library. In Java we would put
itin a separate pac:kage.4

4. In dynamic languages like Smalltalk, Pyrhon, or Ruby, the interface simply wouldn’t exist as an explicit source-code entity.



132 Chapter 11 « DIP: The Dependency-inversion Principlk

The Furnace Example

Let’s look at a more interesting example. Consider the software that might
control the regulator of a furnace. The software can read the current tempera-
ture from an IO channel and instruct the furnace to turn on or off by sending
commands to a different IO channel. The structure of the algorithm might look
something like Listing 11-2.

Listing 11-2
Simple algorithm for a thermostat

#define TERMOMETER 0x86
#define FURNACE 0x87
#define ENGAGE 1
#define DISENGAGE 0

void Regulate(double minTemp, double maxTemp)
{
for(;:)
{
while (in(THERMOMETER) > minTemp)
wait (1) ;
out (FURNACE, ENGAGE) ;

while (in(THERMOMETER) < maxTemp)
wait(l);
out (FURNACE, DISENGAGE) ;
}

The high-level intent of the algorithm is clear, but the code is cluttered with lots of low-level details. This
code could never be reused with different control hardware.

This may not be much of a loss since the code is very small. But even so, it is a shame to have the algorithm
lost for reuse. We'd rather invert the dependencies and see something like Figure 11-5.

«function»
Regulate
«parameter» E«parametern
«interface» «interface»
Thermometer Heater
+ read() + engage()
+ disengage()
10 Channel 10 Channel
Thermometer Heater

Figure 11-5 Generic Regulator

This shows that the regulate function takes two arguments that are both interfaces. The Thermometer inter-

face can be read, and the Heater interface can be engaged and disengaged. This is all the Regulate algorithm
needs. Now it can be written as shown in Listing 11-3.



The Furnace Example

Listing 11-3
Generic Regulator

void Regulate(Thermometer& t, Heater& h,
double minTemp, double maxTemp)

for(;;)
{
while (t.Read() > minTemp)
wait (1) ;
h.Engage() ;

while (t.Read() < maxTemp)
wait (1) ;
h.Disengage() ;
}

133

This has inverted the dependencies such that the high-level regulation policy does not depend on any of the

specific details of the thermometer or the furnace. The algorithm is nicely reusable.

Dynamic v. Static Polymorphism

We have achieved the inversion of the dependencies, and made Regulate generic, through the use of dynamic
polymorphism (i.e., abstract classes or interfaces). However, there is another way. We could have used the static

form of polymorphism afforded by C++ templates. Consider Listing 11-4.

Listing 11-4

template <typename THERMOMETER, typename HEATER>

class Regulate (THERMOMETER& t, HEATER& h,
double minTemp, double maxTemp)

for(;;)
{
while (t.Read() > minTemp)
wait (1) ;
h.Engage() ;

while (t.Read{() < maxTemp)
wait (1) ;
h.Disengage() ;

This achieves the same inversion of dependencies without the overhead (or flexibility) of dynamic polymor-
phism. In C++, the Read, Engage, and Disengage methods could all be nonvirtual. Moreover, any class that

declares these methods can be used by the template. They do not have to inherit from a common base.

As a template, Regulate does not depend on any particular implementation of these functions. All that is
required is that the class substituted for HEATER have an Engage and a Disengage method and that the class sub-
stituted for THERMOMETER have a Read function. Thus, those classes must implement the interface defined by the
template. In other words, both Regulate, and the classes that Regulate uses, must agree on the same interface,

and they both depend on that agreement.



134 Chapter 11 < DIP: The Dependency-Inversion Principk

Static polymorphism breaks the source-code dependency nicely, but it does not solve as many problems
does dynamic polymorphism. The disadvantages of the template approach are (1) The types of HEATER and
THERMOMETER cannot be changed at runtime; and (2) The use of a new kind of HEATER or THERMOME
TER will force recompilation and redeployment. So unless you have an extremely stringent requirement for speed.
dynamic polymorphism should be preferred.

Conclusion

Traditional procedural programming creates a dependency structure in which policy depends on detail. This is
unfortunate since the policies are then vulnerable to changes in the details. Object-oriented programming inverts
that dependency structure such that both details and policies depend on abstraction, and service interfaces are often
owned by their clients.

Indeed, it is this inversion of dependencies that is the hallmark of good object-oriented design. It doesn'
matter what language a program is written in. If its dependencies are inverted, it has an OO design. If its dependen-
cies are not inverted, it has a procedural design.

The principle of dependency inversion is the fundamental low-level mechanism behind many of the benefits
claimed for object-oriented technology. Its proper application is necessary for the creation of reusable frameworks,
It is also critically important for the construction of code that is resilient to change. Since the abstractions and
details are all isolated from each other, the code is much easier to maintain.

Bibliography

1. Booch, Grady. Object Solutions. Menlo Park, CA: Addison-Wesley, 1996.
2. Gamma, et al. Design Patterns. Reading, MA: Addison—Wesley, 1995.
3. Sweet. Richard E. The Mesa Programming Environment. SIGPLAN Notices, 20(7) (July 1985): 216-229.



12

ISP: The Interface-Segregation
Principle

This principle deals with the disadvantages of “fat” interfaces. Classes that have “fat” interfaces are classes whose
interfaces are not cohesive. In other words, the interfaces of the class can be broken up into groups of methods.
Each group serves a different set of clients. Thus, some clients use one group of member functions, and other cli-
ents use the other groups.

The ISP acknowledges that there are objects that require noncohesive interfaces; however, it suggests that
clients should not know about them as a single class. Instead, clients should know about abstract base classes that
have cohesive interfaces.

Interface Pollution

Consider a security system. In this system, there are Door objects that can be locked and unlocked, and which
know whether they are open or closed. (See Listing 12-1.)

Listing 12-1

Security Door
class Door

{

public:
virtual void Lock() = 0;
virtual void Unlock() = 0;
virtual bool IsDoorOpen() = 0;

}i

This class is abstract so that clients can use objects that conform to the Door interface, without having to
depend on particular implementations of Door.

Now consider that one such implementation, TimedDoor, needs to sound an alarm when the door has been
left open for too long. In order to do this, the TimedDoor object communicates with another object called a
Timer. (See Listing 12-2.)

135



136 Chapter 12  ISP: The Interface-Segregation Principle

Listing 12-2
class Timer
{

public:

void Register (int timeout, TimerClient* client);
Y

class TimerClient
{
public:
virtual void TimeOut() = 0;

Y

When an object wishes to be informed about a time-out, it calls the Register function of the Timer. The
arguments of this function are the time of the time-out, and a pointer to a TimerClient object whose TimeOut
function will be called when the time-out expires.

How can we get the TimerClient class to communicate with the TimedDoor class so that the code in the
TimedDoor can be notified of the time-out? There are several alternatives. Figure 12-1 shows a naive solution. We
force Door, and therefore TimedDoor, to inherit from TimerClient. This ensures that TimerClient can regis-
ter itself with the Timer and receive the TimeOut message.

«interface»
Timer Client

Timer

+ Timeout

B

Door

‘f

Timed Door

Figure 12-1 Timer Client at Top of Hierarchy

Although this solution is common, it is not without problems. Chief among these is that the Door class now
depends on TimerClient. Not all varieties of Door need timing. Indeed, the original Door abstraction had noth-
ing whatever to do with timing. If timing-free derivatives of Door are created, those derivatives will have to pro-
vide degenerate implementations for the TimeOut method—a potential violation of the LSP. Moreover, the
applications that use those derivatives will have to import the definition of the TimerClient class, even though it
is not used. That smells of Needless Complexity and Needless Redundancy.

This is an example of interface pollution, a syndrome that is common in statically typed languages like C++
and Java. The interface of Door has been polluted with a method that it does not require. It has been forced to
incorporate this method solely for the benefit of one of its subclasses. If this practice is pursued, then every time a
derivative needs a new method, that method will be added to the base class. This will further pollute the interface
of the base class, making it “fat.”

Moreover, each time a new method is added to the base class, that method must be implemented (or allowed to
default) in derived classes. Indeed, an associated practice is to add these interfaces to the base class giving them
degenerate implementations, specifically so that derived classes are not burdened with the need to implement them.
As we learned previously, such a practice can violate the LSP, leading to maintenance and reusability problems.



ISP: The Interface-Segregation Principle 137

Separate Clients Mean Separate Interfaces

Door and TimerClient represent interfaces that are used by completely different clients. Timer uses
TimerClient, and classes that manipulate doors use Door. Since the clients are separate, the interfaces should
remain separate, too. Why? Because clients exert forces on the interfaces they use.

The Backwards Force Applied by Clients On Interfaces

When we think of forces that cause changes in software, we normally think about how changes to interfaces will
affect their users. For example, we would be concerned about the changes to all the users of TimerClient if the
TimerClient interface changed. However, there is a force that operates in the other direction. Sometimes it is the
user that forces a change to the interface.

For example, some users of Timer will register more than one time-out request. Consider the TimedDoor.
When it detects that the Door has been opened, it sends the Register message to the Timer, requesting a time-
out. However, before that time-out expires, the door closes, remains closed for a while, and then opens again. This
causes us to register a new time-out request before the old one has expired. Finally, the first time-out request
expires and the TimeOut function of the TimedDoor is invoked. The Door alarms falsely.

We can correct this situation by using the convention shown in Listing 12-3. We include a unique
timeOutId code in each time-out registration, and we repeat that code in the TimeOut call to the TimerClient.
This allows each derivative of TimerClient to know which time-out request is being responded to.

Listing 12-3

Timer with ID
class Timer
{
public:
void Register (int timeout,
int timeOutlId,
TimerClient* client);

i

class TimerClient

{
public:
virtual void TimeOut (int timeOutId) = 0;
}i

Clearly this change will affect all the users of TimerClient. We accept this since the lack of the
timeOutId is an oversight that needs correction. However, the design in Figure 12-1 will also cause Door, and all
clients of Door to be affected by this fix! This smells of Rigidity and Viscosity. Why should a bug in TimerClient
have any affect on clients of Door derivatives that do not require timing? When a change in one part of the pro-
gram affects other completely unrelated parts of the program, the cost and repercussions of changes become
unpredictable, and the risk of fallout from the change increases dramatically.

ISP: The Interface-Segregation Principle
Clients should not be forced to depend on methods that they do not use.
When clients are forced to depend on methods that they don’t use, then those clients are subject to changes to those

methods. This results in an inadvertent coupling between all the clients. Said another way, when a client depends
on a class that contains methods that the client does not use, but that other clients do use, then that client will be



138 Chapter 12 » ISP: The Interface-Segregation Principle

affected by the changes that those other clients force upon the class. We would like to avoid such couplings where
possible, and so we want to separate the interfaces.

Class Interfaces v. Object Interfaces

Consider the TimedDoor again. Here is an object which has two separate interfaces used by two separate clients—
Timer and the users of Door. These two interfaces must be implemented in the same object, since the implemen-
tation of both interfaces manipulates the same data. So how can we conform to the ISP? How can we separate the
interfaces when they must remain together?

The answer to this lies in the fact that clients of an object do not need to access it through the interface of the
object. Rather, they can access it through delegation or through a base class of the object.

Separation through Delegation

One solution is to create an object that derives from TimerClient and delegates to the TimedDoor. Figure 12-2
shows this solution.

When the TimedDoor wants to register a time-out request with the Timer, it creates a DoorTimerAdapter
and registers it with the Timer. When the Timer sends the TimeOut message to the DoorTimerAdapter, the
DoorTimerAdapter delegates the message back to the TimedDoor.

«interface»

Timer Client
Timer Door

+ Timeout

T

Door Timer
Adapter

+ Timeout() + DoorTimeOut

Timed Door

A «creates»

Figure 12-2 Door Timer Adapter

This solution conforms to the ISP and prevents the coupling of Door clients to Timer. Even if the change to
Timer shown in Listing 12-3 were to be made, none of the users of Door would be affected. Moreover,
TimedDoor does not have to have the exact same interface as TimerClient. The DoorTimerAdapter can
translate the TimerClient interface into the TimedDoor interface. Thus, this is a very general purpose solution.
(See Listing 12-4.)

Listing 12-4
TimedDoor.cpp

class TimedDoor : public Door
{
public:
virtual void DoorTimeOut (int timeOutId) ;

Y

class DoorTimerAdapter : public TimerClient
{
public:
DoorTimerAdapter (TimedDoor& theDoor)



The ATM User Interface Example 139

itsTimedDoor (theDoor)
{}

virtual void TimeQut (int timeOutId)
{itsTimedDoor .DoorTimeQut (timeOutId) ;}

private:
TimedDoor& itsTimedDoor;

}i

However, this solution is also somewhat inelegant. It involves the creation of a new object every time we
wish to register a time-out. Moreover, the delegation requires a very small, but still nonzero, amount of runtime
and memory. There are application domains, such as embedded real-time control systems, in which runtime and
memory are scarce enough to make this a concern.

Separation through Multiple Inheritance
Figure 12-3 and Listing 12-5 show how multiple inheritance can be used to achieve the ISP. In this model,
TimedDoor inherits from both Door and TimerClient. Althoﬁgh clients of both base classes can make use of
TimedDoor, neither actually depends on the TimedDoor class. Thus, they use the same object through separate
interfaces.

«interface»
Timer Client
Timer Door
0.*
+ Timeout T
| [
Timed Door
+ TimeOut

Figure 12-3 Multiply inherited Timed Door

Listing 12-5
TimedDoor .cpp

class TimedDoor : public Door, public TimerClient
{
public:
virtual void TimeOut (int timeOutId) ;
}i

This solution is my normal preference. The only time I would choose the solution in Figure12-2 over Figure
12-3 is if the translation performed by the DoorTimerAdapter Object were necessary, or if different translations
were needed at different times.

The ATM User Interface Example

Now let’s consider a slightly more significant example. The traditional automated
teller machine (ATM) problem. The user interface of an ATM machine needs to be
very flexible. The output may need to be translated into many different languages.
It may need to be presented on a screen, or on a braille tablet, or spoken out a
speech synthesizer. Clearly this can be achieved by creating an abstract base class
that has abstract methods for all the different messages that need to be presented by
the interface.




140 Chapter 12  ISP: The Interface-Segregation Principle

«interface»
ATM Ul

[

Screen Ul Braille Ul Speech Ul

Figure 12-4

Consider also that each different transaction that the ATM can perform is encapsulated as a derivative of the
class Transaction. Thus, we might have classes such as DepositTransaction, WithdrawalTransaction,
and TransferTransaction. Each class invokes methods of the UI. For example, in order to ask the user to enter
the amount he wishes to deposit, the DepositTransaction object invokes the RequestDepositAmount method
of the UT class. Likewise, in order to ask the user how much money he wants to transfer between accounts, the

TransferTransaction object calls the RequestTransferAmount method of UI. This corresponds to the dia-
gram in Figure 12-5.

Transaction
{abstract}

+ Execute()
4
!

Deposit Withdrawal Transfer
Transaction Transaction Transaction

v
«interface»
ul

+ RequestDepositAmount()

+ RequestWithdrawalAmount()
+ RequestTransferAmount()

+ InforminsufficientFunds()

Figure 12-5 ATM Transaction Hierarchy

Notice that this is precisely the situation that the ISP tells us to avoid. Each transaction is using
methods of the Ul that no other class uses. This creates the possibility that changes to one of the derivatives
of Transaction will force corresponding change to the UI, thereby affecting all the other derivatives of
Transaction and every other class that depends on the UI interface. Something smells like Rigidity and
Fragility around here.

For example, if we were to add a PayGasBillTransaction, we would have to add new methods to Ul in
order to deal with the unique messages that this transaction would want to display. Unfortunately, since
DepositTransaction, WithdrawalTransaction, and TransferTransaction all depend on the UT inter-
face, they must all be recompiled. Worse, if the transactions were all deployed as components in separate DLLs or
shared libraries, then those components would have to be redeployed, even though none of their logic was
changed. Can you smell the Viscosity?



The ATM User Interface Example 141

This unfortunate coupling can be avoided by segregating the UT interface into individual interfaces such as
DepositUI, WithdrawUI, and TransferUI. These separate interfaces can then be multiply inherited into the
final UT interface. Figure 12-6 and Listing 12-6 show this model.

Transaction
{abstract}
+ Execute()
4
[ [ |
Deposit Withdrawal Transfer
Transaction Transaction Transaction
V .............................. V

«interface» «interface» «interface»
Deposit Ul Withdrawal Ul Transfer Ul

+ RequestDepositAmount() + RequestWithdrawalAmount() + RequestTransferAmount()
+ InformInsufficientFunds()

3 7 7

«interface»
ul

+ RequestDepositAmount()

+ RequestWithdrawalAmount()
+ RequestTransferAmount()

+ InforminsufficientFunds()

Figure 12-6 Segregated ATM Ul Interface

Whenever a new derivative of the Transaction class is created, a corresponding base class for the abstract
UI interface will be needed, and so the UT interface and all its derivatives must change. However, these classes are
not widely used. Indeed, they are probably only used by main or whatever process boots the system and creates
the concrete UT instance. So the impact of adding new UTI base classes is minimized.

Listing 12-6
Segregated ATM UI Interface

class DepositUI
{
public:
virtual void RequestDepositAmount() = 0;
)i

class DepositTransaction : public Transaction
{
public:
DepositTransaction (DepositUI& ui)
itsDepositUI (ui)
{}

virtual void Execute()

{

itsDepositUI.RequestDepositAmount () ;



142

}
private:
DepositUI& itsDepositUI;
}i

class WithdrawalUI
{
public:
virtual void RequestWithdrawalAmount () = 0;
}:

class WithdrawalTransaction : public Transaction
{
public:
WithdrawalTransaction (WithdrawalUI& ui)
itsWithdrawalUI (ui)
{}

virtual void Execute()

{

itsWithdrawalUI.RequestWithdrawalAmount () ;

}
private:
WithdrawalUI& itsWithdrawalUI;
Y

class TransferUI
{
public:
virtual void RequestTransferAmount() = 0;
Y

class TransferTransaction : public Transaction
{
public:
TransferTransaction(TransferUI& ui)
itsTransferUI (ui)

}

virtual void Execute()

{
itsTransferUI.RequestTransferAmount () ;

}
private:
TransferUI& itsTransferUI;
Y

class UI : public DepositUI
, public WithdrawalUI
, public TransferUI

Chapter 12 ¢ ISP: The Interface-Segregation Principle



The ATM User Interface Example 143

{
public:
virtual void RequestDepositAmount () ;
virtual void RequestWithdrawalAmount () ;
virtual void RequestTransferAmount () ;
}i

A careful examination of Listing 12-6 will show one of the issues with ISP conformance that was not obvi-
ous from the TimedDoor example. Note that each transaction must somehow know about its particular version of
the UI. DepositTransaction must know about DepositUI, WithdrawTransaction must know about
withdrawUTI, etc. In Listing 12-6, I have addressed this issue by forcing each transaction to be constructed with a
reference to its particular UL Note that this allows me to employ the idiom in Listing 12-7.

Listing 12-7
Interface Initialization Idiom
UI Gui; // global object;

void f ()
{

DepositTransaction dt (Gui);

This is handy, but it also forces each transaction to contain a reference member to its Ul. Another way to
address this issue is to create a set of global constants as shown in Listing 12-8. Global variables are not always a
symptom of a poor design. In this case they provide the distinct advantage of easy access. Since they are refer-
ences, it is impossible to change them in any way. Therefore they cannot be manipulated in a way that would sur-
prise other users.

Listing 12-8
Seperate Global Pointers

// in some module that gets linked in
// to the rest of the app.

static UI Lui; // non-global object;

DepositUI& GdepositUI = Lui;
WithdrawalUI& GwithdrawalUI = Lui;
TransferUI& GtransferUI = Lui;

// In the depositTransaction.h module
class WithdrawalTransaction : public Transaction
{

public:

virtual void Execute /()

{

GwithdrawalUI.RequestWithdrawalAmount () ;



144 Chapter 12 « ISP: The Interface-Segregation Principle

In C++, one might be tempted to put all the globals in Listing 12-8 into a single class in order to prevent pol-
lution of the global namespace. Listing 12-9 shows such an approach. This, however, has an unfortunate effect. In
order to use UIGlobals, you must #include ui_globals.h. This, in turn, #includes depositUI.h,
withdrawUI.h, and transferUI.h. This means that any module wishing to use any of the UI interfaces transi-
tively depends on all of them— exactly the situation that the ISP warns us to avoid. If a change is made to any of
the Ul interfaces, all modules that #include "ui_globals.h" are forced to recompile. The UIGlobals class
has recombined the interfaces that we had worked so hard to segregate!

Listing 12-9
Wrapping the Globals in a class
// in ui_globals.h

#include "depositUI.h"
#include "withdrawalUI.h"
#include "transferUI.h"

class UIGlobals
{
public:
static WithdrawalUI& withdrawal;
static DepositUI& deposit;
static TransferUI& transfer

};
// in ui_globals.cc

static UI Lui; // non-global object;

DepositUI& UIGlobals: :deposit = Lui;
WithdrawalUI& UIGlobals::withdrawal = Lui;
TransferUI& UIGlobals::transfer = Lui;

The Polyad v. the Monad

Consider a function g that needs access to both the DepositUT and the TransferUI. Consider also that we wish
to pass the Uls into this function. Should we write the function prototype like this?

void g(DepositUI&, TransferUI&);
Or should we write it like this?
void g(UI&);

The temptation to write the latter (monadic) form is strong. After all, we know that in the former (polyadic)
form, both arguments will refer to the same object. Moreover, if we were to use the polyadic form, its invocation
might look like this:

g(ui, ui);

Somehow, this seems perverse.

Perverse or not, the polyadic form is often preferable to the monadic form. The monadic form forces g to
depend on every interface included in UI. Thus, when withdrawUI changes, g and all clients of g could be
affected. This is more perverse than g (ui, ui)! Moreover, we cannot be sure that both arguments of g will always



Conclusion 145

refer to the same object! In the future, it may be that the interface objects are separated for some reason. The fact
that all interfaces are combined into a single object is information that g does not need to know. Thus, I prefer the
polyadic form for such functions.

Grouping Clients. Clients can often be grouped together by the service methods they call. Such group-
ings allow segregated interfaces to be created for each group instead of each client. This greatly reduces the num-
ber of interfaces that the service has to implement, and it also prevents the service from depending on each client
type.

Sometimes, the methods invoked by different groups of clients will overlap. If the overlap is small, then the
interfaces for the groups should remain separate. The common functions should be declared in all the overlapping
interfaces. The server class will inherit the common functions from each of those interfaces, but it will implement
them only once.

Changing Interfaces. When object-oriented applications are maintained, the interfaces to existing
classes and components often change. There are times when these changes have a huge impact and force the
recompilation and redeployment of a very large part of the system. This impact can be mitigated by adding new
interfaces to existing objects, rather than changing the existing interface. Clients of the old interface that wish to
access methods of the new interface can query the object for that interface, as shown in Listing 12-10.

Listing 12-10

void Client (Service* s)

{
if (NewService* ns = dynamic_cast<NewService*>(s))
{

// use the new service interface

As with all principles, care must be taken not to overdo it. The spectre of a class with hundreds of different
interfaces, some segregated by client and others segregated by version, would be frightening indeed.

Conclusion

Fat classes cause bizarre and harmful couplings between their clients. When one client forces a change on the fat
class, all the other clients are affected. Thus, clients should only have to depend on methods that they actually call.
This can be achieved by breaking the interface of the fat class into many client-specific interfaces. Each client-spe-
cific interface declares only those functions that its particular client, or client group, invoke. The fat class can then
inherit all the client-specific interfaces and implement them. This breaks the dependence of the clients on methods
that they don’t invoke, and it allows the clients to be independent of each other.

Bibliography

1. Gamma, et al. Design Patterns. Reading, MA: Addison—Wesley, 1995.



